High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Abstract

General Description The MAX2031 high-linearity passive upconverter or downconverter mixer is designed to provide +36 dBm IIP3, 7dB NF, and 7dB conversion loss for an 815 MHz to 1000 MHz RF frequency range to support GSM/cellular base-station transmitter or receiver applications. With a 960 MHz to 1180 MHz LO frequency range, this particular mixer is ideal for high-side LO injection architectures. For a pin-to-pin-compatible mixer meant for low-side LO injection, contact the factory. In addition to offering excellent linearity and noise performance, the MAX2031 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also integrated to allow for a single-ended RF input for downconversion (or RF output for upconversion), and single-ended LO inputs. The MAX2031 requires a nominal LO drive of 0 dBm , and supply current is guaranteed to be below 100 mA . The MAX2031 is pin compatible with the MAX2039/ MAX2041* 1700MHz to 2200 MHz mixers, making this family of passive upconverters and downconverters ideal for applications where a common PC board layout is used for both frequency bands. The MAX2031 is available in a compact 20-pin thin QFN package ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) with an exposed paddle. Electrical performance is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

Cellular Band WCDMA	Predistortion Receivers
and cdma2000® ${ }^{\circledR}$ Base	Microwave and Fixed
Stations	Broadband Wireless
GSM 850/GSM 900 2G	Access
and 2.5G EDGE Base	Wireless Local Loop
Stations Digital	Digital and Spread-
Integrated Digital	Spectrum
Enhanced Network (iDEN ${ }^{\circledR}$) Base Stations	Communication Systems
WiMAX ${ }^{(S M)}$ Base Stations and Customer Premise Equipment	

*Future product-contact factory for availability.
cdma2000 is a registered trademark of Telecommunications Industry Association.
iDEN is a registered trademark of Motorola, Inc.
WiMAX is a service mark of Bandwidth.com, Inc.

Features

- 815MHz to 1000MHz RF Frequency Range
- 960 MHz to 1180 MHz LO Frequency Range
- 325 MHz to 850 MHz LO Frequency Range (Contact Factory)
- DC to 250MHz IF Frequency Range
- 7dB Conversion Loss
- +36dBm Input IP3
- +27dBm Input 1dB Compression Point
- 7dB Noise Figure
- Integrated LO Buffer
- Integrated RF and LO Baluns
- Low -3dBm to +3dBm LO Drive
- Built-In SPDT LO Switch with 49dB LO1 to LO2 Isolation and 50ns Switching Time
- Pin Compatible with the MAX2039/MAX2041 1700MHz to 2200 MHz Mixers
- External Current-Setting Resistor Provides Option for Operating Mixer in Reduced-Power/ReducedPerformance Mode
- Lead-Free Package Available

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX2031ETP/-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP** $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	T2055-3
MAX2031ETP $+/+\mathrm{T}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP** $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$	$\mathrm{T} 2055-3$

**EP = Exposed paddle.
+Denotes lead-free package.
Pin Configuration/ Functional Diagram

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

ABSOLUTE MAXIMUM RATINGS

o + 5.5 V
RF (RF is DC shorted to GND through a balun)................ 50 mA
LO1, LO2 to GND ..-0.3V to +0.3V
IF+, IF- to GND-0.3V to (VCC + 0.3V)
TAP to GND ...-0.3V to +1.4V
LOSEL to GND-0.3V to (VCC + 0.3V)
LOBIAS to GND.....................................-0.3V to (VCC + 0.3V)
RF, LO1, LO2 Input Power* +20 dBm

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 20-Pin Thin QFN-EP (derate $26.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)2.1W
ӨjA ... $+38^{\circ} \mathrm{C} / \mathrm{W}$
Өjc .. $+13^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range (Note A) $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ead Temperature (s

Note A: T_{C} is the temperature on the exposed paddle of the package.
*Maximum reliable continuous input power applied to the RF and IF port of this device is +12 dBm from a 50Ω source.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , no RF signals applied, $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. $\mathrm{IF}+$ and IF - are DC grounded through an IF balun. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
UNITS					
Supply Voltage	$\mathrm{VCC}_{\mathrm{CC}}$		4.75	5.00	5.25
Supply Current	$\mathrm{I} C \mathrm{C}$		85	100	mA
LOSEL Input-Logic Low	V_{IL}			0.8	V
LOSEL Input-Logic High	V_{IH}		2	V	

AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{C} 5=2 \mathrm{pF}$, L1 and C4 not used, $\mathrm{VCC}=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $P_{L O}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=815 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=960 \mathrm{MHz}$ to $1180 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=910 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1070 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency Range	$f_{\text {RF }}$	(Note 2)	815		1000	MHz
LO Frequency Range	flo	(Note 2)	960		1180	MHz
		Contact factory	325		850	
IF Frequency Range	fiF	External IF transformer dependence (Note 2)	DC		250	MHz
LO Drive	PLO	(Note 2)	-3		+3	dBm
LO1-to-LO2 Isolation (Note 3)		LO2 selected, $\mathrm{PLO}=+3 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$	42	51		dB
		LO1 selected, $\mathrm{PLO}=+3 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$	42	49		
Maximum LO Leakage at RF Port		$\mathrm{PLO}=+3 \mathrm{dBm}$		-27		dBm
Maximum LO Leakage at IF Port		$\mathrm{PLO}=+3 \mathrm{dBm}$		-35		dBm
LO Switching Time		50% of LOSEL to IF, settled within 2 degrees		50		ns
Minimum RF-to-IF Isolation				45		dB
RF Port Return Loss				17		dB
LO Port Return Loss		LO1/LO2 port selected, LO2/LO1, RF, and IF terminated into 50Ω		28		dB
		LO1/LO2 port unselected, LO2/LO1, RF, and IF terminated into 50Ω		30		
IF Port Return Loss		LO driven at 0dBm, RF terminated into 50Ω		17		dB

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)

(Typical Application Circuit, C5 $=2 \mathrm{pF}$, L1 and C 4 not used, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $P_{L O}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=815 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=960 \mathrm{MHz}$ to $1180 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=910 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1070 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Loss	Lc			7.0		dB
Conversion Loss Flatness		Flatness over any one of three frequency bands ($\mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$): $\mathrm{f}_{\mathrm{RF}}=827 \mathrm{MHz}$ to 849 MHz $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$ to 894 MHz $\mathrm{f}_{\mathrm{RF}}=880 \mathrm{MHz}$ to 915 MHz		± 0.18		dB
Conversion Loss Variation Over Temperature		$\mathrm{T}^{\mathrm{C}}=+25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$		-0.3		dB
		$\mathrm{T}^{\text {C }}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.2		
Input Compression Point	$\mathrm{P}_{1 \mathrm{~dB}}$	(Note 4)		27		dBm
Input Third-Order Intercept Point	IIP3	$\mathrm{f}_{\mathrm{RF} 1}=910 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}} 2=911 \mathrm{MHz}$, $\mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm} /$ tone, $\mathrm{fLO}=1070 \mathrm{MHz}$, PLO $=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$ (Note 3)		36		dBm
Input IP3 Variation Over Temperature	IIP3	$\mathrm{T}^{\mathrm{C}}=+25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$		0.3		dB
		$\mathrm{T}^{\text {C }}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-0.3		
Spurious Response at IF	2×2	2LO-2RF		72		dBc
	3×3	3LO-3RF		79		
Noise Figure	NF	Single sideband		7.0		dB
Noise Figure Under Blocking (Note 5)		PBLOCKER $=+8 \mathrm{dBm}$		15		dB
		PBLOCKER $=+12 \mathrm{dBm}$		19		

AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)

(Typical Application Circuit, $\mathrm{L} 1=4.7 \mathrm{nH}, \mathrm{C} 4=6 \mathrm{pF}, \mathrm{C} 5$ not used, $\mathrm{V} \mathrm{CC}=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{P}_{\mathrm{LO}}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=815 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=960 \mathrm{MHz}$ to $1180 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{T}_{\mathrm{C}}=$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} \mathrm{CC}=+5 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=910 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1070 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=$ $160 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Loss	Lc			7.4		dB
Conversion Loss Flatness		Flatness over any one of three frequency bands (fif = 160MHz): $\mathrm{f}_{\mathrm{RF}}=827 \mathrm{MHz}$ to 849 MHz $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$ to 894 MHz $\mathrm{f}_{\mathrm{RF}}=880 \mathrm{MHz}$ to 915 MHz		± 0.3		dB
Conversion Loss Variation Over Temperature		T $\mathrm{C}=+25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$		-0.3		dB
		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.4		
Input Compression Point	P1dB	(Note 4)		27		dBm
Input Third-Order Intercept Point	IIP3	$\begin{aligned} & \mathrm{f}_{\mathrm{IF} 1}=160 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=161 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm} / \text { tone }, \mathrm{f} \mathrm{fO}=1070 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}(\text { Note } 3) \end{aligned}$	32	36		dBm
Input IP3 Variation Over Temperature	IIP3	TC $=+25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$		1.2		dB
		TC $=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-0.9		

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (continued)

(Typical Application Circuit, L1 $=4.7 \mathrm{nH}, \mathrm{C} 4=6 \mathrm{pF}$, C5 not used, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PIF}^{2}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{fF}}=815 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=960 \mathrm{MHz}$ to $1180 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{T}_{\mathrm{C}}=$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=910 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1070 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=$ $160 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
MAX	UNITS			
LO $\pm 2 \mathrm{IF}$ Spur			64	dBc
LO $\pm 31 \mathrm{~F}$ Spur			83	dBc
Output Noise Floor		Pout $=0 \mathrm{dBm}$ (Note 5)	-167	$\mathrm{dBm} / \mathrm{Hz}$

Note 1: All limits include external component losses. Output measurements are taken at IF or RF port of the Typical Application Circuit.
Note 2: Operation outside this range is possible, but with degraded performance of some parameters.
Note 3: Guaranteed by design.
Note 4: Compression point characterized. It is advisable not to continuously operate the mixer RF/IF inputs above +12 dBm .
Note 5: Measured with external LO source noise filtered, so its noise floor is $-174 \mathrm{dBm} / \mathrm{Hz}$. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics

(Typical Application Circuit, C5 $=2 \mathrm{pF}$, L1 and C4 not used, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{PLO}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{f}}=160 \mathrm{MHz}$, unless otherwise noted.)

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit, $\mathrm{C} 5=2 \mathrm{pF}, \mathrm{L} 1$ and C 4 not used, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit, $\mathrm{C} 5=2 \mathrm{pF}, \mathrm{L} 1$ and C 4 not used, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

(Typical Application Circuit, $\mathrm{C} 5=2 \mathrm{pF}$, L1 and C4 not used, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics

(Typical Application Circuit, L1 $=4.7 \mathrm{nH}, \mathrm{C} 4=6 \mathrm{pF}, \mathrm{C} 5$ not used, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)

Upconverter Curves

CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)

INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)

LO + 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

CONVERSION LOSS vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)

LO + 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

(Typical Application Circuit, $\mathrm{L} 1=4.7 \mathrm{nH}, \mathrm{C} 4=6 \mathrm{pF}, \mathrm{C} 5$ not used, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

LO + 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

Upconverter Curves

LO-2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)

LO + 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

LO-3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

LO - 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

LO + 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

LO-3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit, $\mathrm{L} 1=4.7 \mathrm{nH}, \mathrm{C} 4=6 \mathrm{pF}, \mathrm{C} 5$ not used, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF}}, \mathrm{f}_{\mathrm{IF}}=160 \mathrm{MHz}$, unless otherwise noted.)

IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY

Upconverter Curves

LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)

IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)

RF PORT RETURN LOSS vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY)

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Pin Description

PIN	NAME	FUNCTION
$1,6,8,14$	VCC	Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical Application Circuit.
2	RF	Single-Ended 50 RF Input/Output. This port is internally matched and DC shorted to GND through a balun.
3	TAP	Center Tap of the Internal RF Balun. Connect to ground.
$4,5,10,12$, $13,16,17,20$	GND	Ground
7	LOBIAS	Bias Resistor for Internal LO Buffer. Connect a $523 \Omega \pm 1 \%$ resistor from LOBIAS to the power supply.
9	LOSEL	Local Oscillator Select. Logic-control input for selecting LO1 or LO2.
11	LO1	Local Oscillator Input 1. Drive LOSEL low to select LO1.
15	LO2	Local Oscillator Input 2. Drive LOSEL high to select LO2.
18,19	IF-, IF+	Differential IF Input/Outputs
EP	GND	Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.

Detailed Description

The MAX2031 can operate either as a downconverter or an upconverter mixer that provides approximately 7 dB of conversion loss with a typical 7dB noise figure. IIP3 is +36 dBm for both upconversion and downconversion modes. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF port and the two LO ports. The RF port can be used as an input for downconversion or an output for upconversion. A sin-gle-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 49dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2031's inputs to a -3 dBm to +3 dBm range. The IF port incorporates a differential output for downconversion, which is ideal for providing enhanced IIP2 performance. For upconversion, the IF port is a differential input.
Specifications are guaranteed over broad frequency ranges to allow for use in cellular band WCDMA, cdmaOne ${ }^{\text {TM }}$, cdma2000, and GSM 850/GSM 9002.5 G EDGE base stations. The MAX2031 is specified to operate over an 815 MHz to 1000 MHz RF frequency range, a 960 MHz to 1180 MHz LO frequency range, and a DC to 250 MHz IF frequency range. Operation beyond these ranges is possible; see the Typical Operating Characteristics for additional details.
The MAX2031 is optimized for high-side LO injection architectures. However, the device can operate in lowside LO injection applications with an extended LO range, but performance degrades as flo decreases. See
the Typical Operating Characteristics for measurements taken with flo below 960 MHz . For a pin-compatible device that has been optimized for LO frequencies below 960 MHz , contact the factory.

RF Port and Balun
For using the MAX2031 as a downconverter, the RF input is internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required because the input is internally DC shorted to ground through the on-chip balun. For upconverter operation, the RF port is a single-ended output similarly matched to 50Ω.

LO Inputs, Buffer, and Balun

The MAX2031 is optimized for high-side LO injection architectures with a 960 MHz to 1180 MHz LO frequency range. For a device with a 325 MHz to 850 MHz LO frequency range, contact the factory. As an added feature, the MAX2031 includes an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50 ns , which is more than adequate for nearly all GSM applications. If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic-high selects LO2, logic-low selects LO1. To avoid damage to the part, voltage MUST be applied to VCC before digital logic is applied to LOSEL (see the Absolute Maximum Ratings). LO1 and LO2 inputs are internally matched to 50Ω, requiring an 82 pF DC-blocking capacitor at each input.

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

A two-stage internal LO buffer allows a wide inputpower range for the LO drive. All guaranteed specifications are for a -3 dBm to +3 dBm LO signal power. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer

The core of the MAX2031 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.

Differential IF

The MAX2031 mixer has a DC to 250MHz IF frequency range. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applications require a $1: 1$ balun to transform the 50Ω differential IF impedance to 50Ω single-ended. Including the balun, the IF return loss is better than 15 dB . The differential IF is used as an input port for upconverter operation. The user can use a differential IF amplifier following the mixer, but a DC block is required on both IF pins.

Applications Information

Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No matching components are required. As a downconverter, the return loss at the RF port is typically better than 15 dB over the entire input range (815 MHz to 1000 MHz), and return loss at the LO ports are typically 15 dB (960 MHz to 1180 MHz). RF and LO inputs require only DC-blocking capacitors for interfacing.
An optional L-C bandpass filter (BPF) can be installed at the RF port to improve upconverter performance. See the Typical Application Circuit and Typical Operating Characteristics for upconverter operation with an L-C BPF tuned for 810 MHz RF frequency. Performance can be optimized at other frequencies by choosing different values for L1 and C4. Removing L1 and C4 altogether results in a broader match, but performance degrades. Contact factory for details.
The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).

Bias Resistor

Bias current for the LO buffer is optimized by fine tuning resistor R1. If reduced current is required at the expense of performance, contact the factory for details. If the $\pm 1 \%$ bias resistor values are not readily available, substitute standard $\pm 5 \%$ values.

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground-pin traces directly to the exposed pad under the package. The PC board exposed pad MUST be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX2031 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit. See Table 1.

Table 1. Typical Application Circuit Component List

COMPONENT	VALUE	DESCRIPTION
C1, C2, C7, C8, C10, C11, C12	$82 p F$	Microwave capacitors (0603)
C3, C6, C9	10 nF	Microwave capacitors (0603)
C4 *	$6 p F$	Microwave capacitor (0603)
C5** $^{* *}$	2 pF	Microwave capacitor (0603)
L1 *	4.7 nH	Inductor (0603)
R1	523Ω	$\pm 1 \%$ resistor (0603)
T1	$1: 1$	IF balun M/A-COM: MABAES0029
U1	MAX20311	Maxim IC

*C4 and L1 installed only when mixer is used as an upconverter.
${ }^{* *}$ C5 installed only when mixer is used as a downconverter.
Exposed Pad RF/Thermal Considerations The exposed paddle (EP) of the MAX2031's 20-pin thin QFN-EP package provides a low-thermal-resistance path to the die. It is important that the PC board on which the MAX2031 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Typical Application Circuit

NOTE: L1 AND C4 USED ONLY FOR UPCONVERTER OPERATION. C5 USED ONLY FOR DOWNCONVERTER OPERATION.

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

High-Linearity, 815MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

[^0]16 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2005 Maxim Integrated Products
Printed USA
MAXIM is a registered trademark of Maxim Integrated Products, Inc.

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

